From OpenSCADAWiki
Jump to: navigation, search
Other languages:
Constr.png The translation checking and actualizing.

Dynamic model of the steam boiler #9 of DMK
Start: January 2007
State: Finished, August 2010
Participants: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Description: The project is targeted to creating a complete dynamic model of a steam boiler № 9 of Dnepr Metallurgical Combine (DMC).
Address:

  • supplied with the Linux distribution package like to "openscada-model-boiler";
  • directly from the subversion repository and converted to the DB SQLite files in way:
$ wget http://oscada.org/svn/trunk/OpenSCADA/data/ModelsDB/Boiler/Model.sql
$ sqlite3 -init Model.sql Model.db .exit

Live execution: Web-access to the model interface

Model Boiler so gen.png

The modelling object of this project for creation the full-scale real time dynamic model is multi-fuel steam boiler №9 of the Dnepr Metallurgical Combine (DMC). The distinctive feature of the boiler is its multi-fuel nature and the following features in optimal control of boiler's loading.

1 Purpose

Functionally, the purpose of the development is creation of the real time model of multi-fuel boiler.

Operational purpose of development is:

  • ASC TP control algorithms' testing;
  • SCADA-system algorithms' adequate functionality testing;
  • Education of the technology staff.

2 Development

In order to speed up the development, use the experience of previous developments, as well as to improve the technology and development tools of the complete dynamic real-time models the decision to build the model in the OpenSCADA environment was made. The OpenSCADA system has the powerful mechanism of user side programming, as well as achievements to create a complete real-time dynamic models, which allow you to quickly create large real-time dynamic models. It was discussed in the paper report at 5 5 Ukrainian conference of developers and users of free software.

2.1 Technological process

Before the creation the model of the boiler the schematic diagram of the technological process model was formed, based on the schematic diagram of the real process. The scheme is shown in Figure 1.

Fig. 1. The boiler DMK #9 technological scheme.

2.2 Modeling

For the construction of process model based on the available apparatus' models the original schematic diagram and block calculator (BlockCalc) of the OpenSCADA system were directly used. Apparatus models of the schematic diagram were appended to the block scheme in accordance with the schematic diagram. Part of the blocks were been added to the auxiliary equipment, as well as for the flows' nodes. Nodes' blocks numbers are indicated on the schematic diagram by numbers near the flows' nodes.

The model is made as the two block schemes of the block calculator. Content and properties of block schemes are shown in Table 1.

Table 1. The model's block schemes

ID Name Target Execution period (ms) Execution time at Athlon 64 3000+ (ms)
kotel9 DMC Boiler9 Contains a model of boiler № 9 Dnepr Metallurgical Combine. 5 1.1
kotel9_cntr DMC Boiler9 Controller Contains a model of the boiler's control system. 1000 0.05

From the characteristics of block diagrams you can see that the resource intensity of the overall model to the CPU Athlon 64 3000 + (2000MHz) is 22%.

Table 2 lists the apparatus models being used in accordance with the schematic diagram.

Table 2. The used apparatus models

Apparatus model Devices (model blocks)
Library "Technological devices (DAQ.JavaLikeCalc.techApp)"
Boiler: barrel (boilerBarrel) kotel9.Барабан
Boiler: burner (boilerBurner) kotel9.Топка
Gas compressor (compressor) kotel9.ДСА, kotel9.ДСБ, kotel9.ДВА, kotel9.ДВБ
Heat exchanger (heatExch) kotel9.ПП, kotel9.ВП1, kotel9.ВП2, kotel9.СП, kotel9.ЭК1, kotel9.ЭК2
Valve (klap) kotel9.3ВП, kotel9.5ВП, kotel9.7ВП, kotel9.5ГД9, kotel9.6ГД9, kotel9.7ГД9, kotel9.8ГД9, kotel9.9ГД9, kotel9.10ГД9, kotel9.3ГК9, kotel9.4ГК9, kotel9.6ГК9, kotel9.5ГК9, kotel9.3ГП9, kotel9.4ГП9, kotel9.5ГП9, kotel9.6ГП9, kotel9.4ГПЗ9, kotel9.1Ш9, kotel9.2Ш9, kotel9.11Ш9, kotel9.13Ш9
Network (loading) (net) kotel9.ParNet, kotel9.Атмосф
Pipe 1->2 (pipe1_2) kotel9.УЗ3, kotel9.Уз5, kotel9.Уз6, kotel9.Уз7, kotel9.Уз10
Pipe 2->1 (pipe2_1) kotel9.УЗ1, kotel9.УЗ2, kotel9.УЗ9, kotel9.Уз12
Pipe 3->1 (pipe3_1) kotel9.Уз8
Source (pressure) (src_press) kotel9.SrcГД, kotel9.SrcГК, kotel9.SrcВода, kotel9.SrcПГ, kotel9.SrcВоздух
Library "Complex1 functions lib (Special.FLibComplex1)"
PID regulator (pid) kotel9_cntr.TCA1, kotel9_cntr.F_air_gas, kotel9_cntr.QAC151, kotel9_cntr.LC121, kotel9_cntr.PCA51, kotel9_cntr.FC101, kotel9_cntr.FC102, kotel9_cntr.FC103, kotel9_cntr.FC104, kotel9_cntr.FC105, kotel9_cntr.PSA76
Library "Boiler К9" (DAQ.JavaLikeCalc.k9)
Divider (Delitel) kotel9_cntr.Air_Gas
Total fuel flow in boiler (Fsum) kotel9_cntr.Fsum
Inversion (Inversion) kotel9_cntr.5VP_inv

Through the usage of the apparatus models' library and the dynamic models building conception it was obtained the dynamic model, from which you can get the parameters at any point of the schematic diagram both for the study and for testing the control algorithms.

For information about the technological process the TP parameters were created (Table 3), which provide data from selected nodes of the model.

Table 3. Technological process parameters

Cipher Description Properties Source
DMC Boiler9 (BlockCalc.kotel9)
LC121 The water level in the boiler's drum Барабан.Lo
LСA122, LSA124 The level of water in a clean drum slot, right  %, (0;100), Precision 0 Барабан.Lo
LSA123 The level of water in a clean drum slot, left  %, (0;100), Precision 0 Барабан.Lo
LCVG121 3FWL-9 position  %, (0;100), Precision 0 3ВП.l_kl1
LCVG122 3FWR-9 position  %, (0;100), Precision 0 3ВП.l_kl2
G_11SH 11G-9 position 11Ш9.l_kl1
G_12SH 12G-9 position 11Ш9.l_kl2
G_13SH 13G-9 position 13Ш9.l_kl1
G_14SH 14G-9 position 13Ш9.l_kl2
P_5VP 5FW(1) position 5ВП.l_kl1
P_5VP_2 5FW(2) position 5ВП.l_kl2
P_7VP 7FW position 7ВП.l_kl1
P_4GP9 4GN9 position 4ГП9.l_kl1
P_5GP9 5GN9 position 5ГП9.l_kl1
P_7GD 7GBF position 7ГД9.l_kl1
P_8GD 8GBF position 8ГД9.l_kl1
FCVG102 5GN-9 position 5ГП9.l_kl1
FCVG103 7GBF9 position 7ГД9.l_kl1
FCVG104 8GN-9 position 8ГД9.l_kl1
FCVG105 4GC-9 position 4ГК9.l_kl1
TCVG1_1 7FW-9 position 7ВП9.l_kl1
TCVG1_2 5FWL-9 position 5ВП9.l_kl1
PCVG76 SEA productivity rpm, (0;100), Precision 1 ДСА.N
PCVG77 SEB productivity rpm, (0;100), Precision 1 ДСБ.N
FCV106 BFA productivity rpm, (0;100), Precision 1 ДВА.N
FCV107 BFB productivity rpm, (0;100), Precision 1 ДВБ.N
PCA51 Steam pressure after the MSV at, (0;50), Precision 2 4ГПЗ9.Po
PSA52 Steam pressure in the the boiler's drum at, (0;40), Precision 2 Барабан.Po1
PCA52 Steam pressure in the boiler's drum at, (0;50), Precision 2 Барабан.Po1
PSA52_1 Steam pressure in the boiler's drum at, (0;40), Precision 2 Барабан.Po1
PSA53 GN pressure before the regulating valve at, (0;40), Precision 2 3ГП9.Po
PSA53_1 GN pressure before the diaphragm at, (0;40), Precision 2 3ГП9.Po
PSA53_2 GN pressure before the diaphragm at, (0;40), Precision 2 3ГП9.Po
PSA54 GN pressure after the regulating valve at, (0;1.5), Precision 3 5ГП9.Po
PA55 GN pressure before the left burner at, (0;40), Precision 2 6ГП9.Po
PA56 GN pressure before the right burner at, (0;40), Precision 2 6ГП9.Po
PSA57_1, PSA57_2 GBF pressure on the general pipeline. at, (0;2), Precision 2 УЗ3.Pi
PSA59 GBF pressure after valve on the left gas pipeline at, (1;2), Precision 3 10ГД9.Po
PSA60 GBF pressure after valve on the right gas pipeline at, (1;2), Precision 3 9ГД9.Po
P61 GBF pressure before the left burner at, (0;1.6), Precision 2 9ГД9.Po
P62 GBF pressure before the right burner at, (0;1.6), Precision 2 10ГД9.Po
PSA63_1 GC pressure after 5GC-9 at, (0;2), Precision 2 5ГК9.Po
PSA63_2 GC pressure after 3GC-9 at, (0;2), Precision 2 3ГК9.Po
PSA64 GC pressure after the regulating valve at, (0;2), Precision 3 4ГК9.Po
P65 GC pressure before the left burner at, (0;1.6), Precision 2 6ГК9.Po
P66 GC pressure before the right burner at, (0;1.6), Precision 2 6ГК9.Po
P67 The air pressure before the first stage of A/H to the left. at, (0;1.2), Precision 2 УЗ9.Po
P72 The air pressure in the upper tier of the left burner at, (0;1.2), Precision 2 УЗ2.Po
P68 The air pressure before the first stage of A/H to the right. at, (0;1.2), Precision 2 УЗ9.Po
PSA70 Air pressure after the second stage of air-heater at, (0;1.2), Precision 2 ВП2.Po2
PSA71 Air pressure after the second stage of air-heater at, (0;1.2), Precision 2 ВП2.Po2
P73, PSA73 The air pressure in the upper tier of the right burner at, (0;1.16), Precision 2 УЗ2.Po
P74 The air pressure on the lower tier of the left burner at, (0;1.16), Precision 2 УЗ2.Po
P75, PSA75 The air pressure on the lower tier of the right burner at, (0;1.16), Precision 2 УЗ2.Po
PCSA76 The vacuum in the fire chamber on the left at, (0.9;1), Precision 3 Топка.Po
PCSA77 The vacuum in the fire chamber on the right at, (0.9;1), Precision 3 Топка.Po
P78 The vacuum in front of "SE-A" at, (0.9;1), Precision 2 1Ш9.Po
P79 The vacuum in front of "SE-B" at, (0.9;1), Precision 2 2Ш9.Po
PSA80 FW pressure on the left feeding line at, (0;60), Precision 2 SrcВода.Po
PSA81 FW pressure on the right feeding line at, (0;60), Precision 2 SrcВода.Po
PSA85 Air pressure after the air heater at, (0;2), Precision 3 ВП2.Po2
P103 GBF pressure on the diaphragm on the left at, (0;2), Precision 2 УЗ3.Po2
P104 GBF pressure on the diaphragm on the right at, (0;2), Precision 2 УЗ3.Po1
Src_GP_Pi The inlet pressure at the source of GN SrcПГ.Pi
P_GP_S GN pressure after the source SrcПГ.Po
P_GP_4GP GN pressure after 4GN9 4ГП9.Po
P_3VP_1 3FW9(1) position 3ВП.l_kl1
P_3GP9 3GN9 position 3ГП9.l_kl1
P_6GP9_1 6GN9_1 position 6ГП9.l_kl1
P_6GP9_2 6GN9_2 position 6ГП9.l_kl2
P_5GK 5GC position 5ГК9.l_kl1
Pbar The pressure in the boiler's drum Барабан.Po1
TCA1 Steam temperature after MSV 4ГПЗ9.To
F_3VP Water flow after 3FW 3ВП.Fo
F_5VP Water flow after 5FW 5ВП.Fo
F_7VP Water flow after 7FW 7ВП.Fo
Fbar Water flow into the drum Барабан.Fi1
F_UZ8 Water flow after UZ8 Уз8.Fo
FC101 Steam flow from boiler t/h, (0;100), Precision 2 4ГПЗ9.Fo
FC102 Flow of the natural gas after 3GN9 3ГП9.Fo
FC102_0 Natural gas flow after it source SrcПГ.Fo
FC102_1 Natural gas flow after 4GN9 4ГП9.Fo
FC102_2 Natural gas flow after 5GN9 5ГП9.Fo
FC102_3 Natural gas flow after 6GN9 6ГП9.Fo
FC103 GBF flow on the left gas pipeline 5ГД9.Fi
FC104 GBF flow on the right gas pipeline 6ГД9.Fi
FC105 Flow of coke gas after 5GC9 5ГК9.Fo
FC106 Air flow to the left burner t/h, (0;100), Precision 1 УЗ2.Fi1
FC107 Air flow to the right burner t/h, (0;100), Precision 1 УЗ2.Fi2
FA108 The flow of air-superheater on the right feeding line t/h, (0;200), Precision 2 SrcВода.Fo
F109 Water flow for the thermostat t/h, (0;200), Precision 2 7ВП.Fo
FA110 The flow of air-superheater on the left feeding line t/h, (0;200), Precision 2 SrcВода.Fo
QA151 The oxygen content in FG after the superheater  %, (0;20), Precision 2 Топка.O2
QA152 The CO content in FG after the superheater  %, (0;20), Precision 2 Топка.CO
QA153 Oxygen content in the exhaust FG  %, (0;20), Precision 2 Топка.O2
T2 Natural gas temperature deg.K, (223;323), Precision 2 3ГП9.To
T3 GBF temperature deg.K, (273;373), Precision 2 5ГД9.Ti
T5 The temperature of the GC before boiler deg.K, (273;373), Precision 2 4ГК9.To
T7 Air temperature after the second stage of air-heater on the left deg.K, (273;773), Precision 2 ВП2.To2
T8 Air temperature after the second stage of air-heater on the right deg.K, (273;773), Precision 2 ВП2.To2
T13 FG temperature before superheater on the left deg.K, (273;1027), Precision 2 Барабан.To2
T14 FG temperature before superheater on the right deg.K, (273;1027), Precision 2 Барабан.To2
T15 FG temperature before 2 stage of economizer on the left deg.K, (273;873), Precision 2 ПП.To1
T16 FG temperature before 2 stage of economizer on the right deg.K, (273;873), Precision 2 ПП.To1
T17 FG temperature after 2 stage of economizer on the left deg.K, (273;873), Precision 2 ЭК2.To1
T18 FG temperature after 2 stage of economizer on the right deg.K, (273;873), Precision 2 ЭК2.To1
T19 FG temperature before the first stage of air-heater on the left deg.K, (273;873), Precision 2 ЭК1.To1
T20 FG temperature before the first stage of air-heater on the right deg.K, (273;873), Precision 2 ЭК1.To1
T21 FG temperature before the second stage of air-heater on the left deg.K, (273;873), Precision 2 ЭК2.To1
T22 FG temperature before the second stage of air-heater on the right deg.K, (273;873), Precision 2 ЭК2.To1
T23 FG temperature before 1 stage of economizer on the left deg.K, (273;873), Precision 2 ВП2.To1
T24 FG temperature before 1 stage of economizer on the right deg.K, (273;873), Precision 2 ВП2.To1
TA25 FG temperature before th "SE-A" deg.K, (273;673), Precision 2 1Ш9.To
TA26 FG temperature before th "SE-B" deg.K, (273;673), Precision 2 2Ш9.To
T35 The temperature of water on the left feeding line deg.K, (273;473), Precision 2 3ВП.To
T36 The temperature of water on the right feeding line deg.K, (273;473), Precision 2 3ВП.To
T37 The water temperature after the economizer on the left deg.K, (273;673), Precision 2 ЭК2.To2
T38 The water temperature after the economizer on the right deg.K, (273;673), Precision 2 ЭК2.To2
DMC Boiler9 Controller (BlockCalc.kotel9_cntr)
TCA1 Steam temperature at the outlet K, (273;800), Precision 0 TCA1.*
QAC151 The percentage of oxygen in the flue gases.  %, (0;15), Precision 1 QAC151.*
LC121 Level in the boiler's drum  %, (0;100), Precision 1 LC121.*
5VP  %, (0;100), Precision 1 5VP_inv.OVar
FC101 Steam flow from the boiler t/h, (0;150), Precision 0 FC101.*
FC102 Natural gas flow t/h, (0;6), Precision 1 FC102.*
FC103 Flow of blast furnace gas on the left gas pipeline t/h, (0;70), Precision 1 FC103.*
FC104 Flow of blast furnace gas on the right gas pipeline t/h, (0;70), Precision 1 FC104.*
FC105 Flow of the coke oven gas t/h, (0;10), Precision 1 FC105.*
PSA76 The vacuum in the fire chamber at, (0.9;1), Precision 3 PSA76.*

2.3 Regulation

The dynamic model itself may be unstable without control. For example, the drum level parameter does not have the self-regulation and goes to extremes in the case of the balance absence in the control parameters. Because of this reason, as well as to create the self-sustaining model, that can operate autonomously and without the PLC as a controller, the regulators controller's object was created for the boiler's model according to the regulation schemes in Figure 2 - 4.

Fig. 2. Level and steam temperature regulation.
Fig. 3. Rarefaction in the furnace regulation.
Fig. 4. Steam and Gas flows regulation.

3 User interface

The model's user interface contains eleven signal objects (Fig. 5). Each object contains several mnemo, graphics group, contour group and overviews group.

Fig. 5. General view of the user interface window.

3.1 Signal object "Start"

Fig. 6. Signal object "Start" mnemonic scheme.
Fig. 7. Signal object "Start" graphics group.
Fig. 8. Signal object "Start" contours group.
Fig. 9. Signal object "Start" overview group.

3.2 Signal object "Firing"

Fig. 10. Signal object "Firing" mnemonic scheme.
Fig. 11. Signal object "Firing" graphics group.
Fig. 12. Signal object "Firing" contour group.
Fig. 13. Signal object "Firing" overview group.

3.3 Signal object "Flue Gases"

Fig. 14. Signal object "Flue Gases" mnemonic scheme.
Fig. 15. Signal object "Flue Gases" mnemonic scheme 2.
Fig. 16. Signal object "Flue Gases" graphics group.
Fig. 17. Signal object "Flue Gases" contour group.
Fig. 18. Signal object "Flue Gases" overview group.

3.4 Signal object "Drainages"

Fig. 19. Signal object "Drainages" mnemonic scheme.
Fig. 20. Signal object "Drainages" graphics group.
Fig. 21. Signal object "Drainages" contour group.
Fig. 22. Signal object "Drainages" overview group.

3.5 Signal object "GBF"

Fig. 23. Signal object "GBF" mnemonic scheme.
Fig. 24. Signal object "GBF" graphics group.
Fig. 25. Signal object "GBF" contour group.
Fig. 26. Signal object "GBF" overview group.

3.6 Signal object "GN"

Fig. 27. Signal object "GN" mnemonic scheme.
Fig. 28. Signal object "GN" graphics group.
Fig. 29. Signal object "GN" contour group.
Fig. 30. Signal object "GN" overview group.

3.7 Signal object "GC"

Fig. 31. Signal object "GC" mnemonic scheme.
Fig. 32. Signal object "GC" graphics group.
Fig. 33. Signal object "GC" contour group.
Fig. 34. Signal object "GC" overview group.

3.8 Signal object "STEAM"

Fig. 35. Signal object "STEAM" mnemonic scheme.
Fig. 36. Signal object "STEAM" graphics group.
Fig. 37. Signal object "STEAM" contour group.
Fig. 38. Signal object "STEAM" overview group.

3.9 Signal object "FW"

Fig. 39. Signal object "FW" mnemonic scheme.
Fig. 40. Signal object "FW" graphics group.
Fig. 41. Signal object "FW" contour group.
Fig. 42. Signal object "FW" overview group.

3.10 Signal object "Economizer"

Fig. 43. Signal object "Economizer" mnemonic scheme.
Fig. 44. Signal object "Economizer" graphics group.
Fig. 45. Signal object "Economizer" contour group.
Fig. 46. Signal object "Economizer" overview group.

3.11 Signal object "AirSup"

Fig. 47. Signal object "AirSup" mnemonic scheme.
Fig. 48. Signal object "AirSup" mnemonic scheme 2.
Fig. 49. Signal object "AirSup" graphics group.
Fig. 50. Signal object "AirSup" contour group.
Fig. 51. Signal object "AirSup" overview group.

4 Results

The development result is complete dynamic model of the technological process of the multifuel steam boiler for the high pressure and high productivity. This model is available in three languages ​​and is included to the OpenSCADA distributives to demonstrate the functions and features.

The model provides the availability to control of TP on behalf of the operator including the following operations:

  • regulators control:
    • regulator's mode change: "Automate", "Manual" and "Cascade";
    • set of the desirable setpoint value or manual output of the executive mechanism;
    • PID-regulator's parameters configuration.

In general, the following regulators take a full part at the control scheme :

  • LC121 — level in the boiler's drum;
  • PSA76 — the vacuum in the boiler furnace;
  • FC101 — steam flow from the boiler;
  • FC102 — natural gas flow;
  • FC103, FC104 — flow of blast furnace gas on the left gas pipeline ;
  • FC105 — flow of the coke oven gas;
  • QAC151 — the percentage of oxygen in the flue gases;
  • TCA1 — steam temperature at the outlet.

In an applied sense the model let us to work out the control algorithms of the multi fuel supply.

Resource consumption of the model is 70% for the CPU 800 MHz, x86 architecture.